博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
TensorFlow MNIST CNN 代码
阅读量:5229 次
发布时间:2019-06-14

本文共 2430 字,大约阅读时间需要 8 分钟。

import tensorflow as tffrom tensorflow.examples.tutorials.mnist import input_datamnist = input_data.read_data_sets('MNIST_data',one_hot=True)def compute_accuracy(v_xs, v_ys):    global prediction    y_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})    correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))    result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})    return resultdef weight_variable(shape):    initial = tf.truncated_normal(shape,stddev=0.1)    return tf.Variable(initial)def bias_variable(shape):    initial = tf.constant(0.1,shape=shape)    return tf.Variable(initial)def conv2d(x,W):    #stride:[1,x_movement,y_movement,1]    return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(x):    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")#image with and height#result lengthwh = 28rl = 10xs = tf.placeholder(tf.float32,[None,wh*wh])ys = tf.placeholder(tf.float32,[None,rl])keep_prob = tf.placeholder(tf.float32)x_image=tf.reshape(xs,[-1,wh,wh,1])#patch 5*5 in size 1 ,out size 32W_conv1 = weight_variable([5,5,1,32])b_conv1 = bias_variable([32])h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)h_pool1 = max_pool_2x2(h_conv1)W_conv2 = weight_variable([5,5,32,64])b_conv2 = bias_variable([64])h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)h_pool2 = max_pool_2x2(h_conv2)W_fc1 = weight_variable([7*7*64,1024])B_fc1 = bias_variable([1024])#[7,7,64]=>[7*7*64]h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+B_fc1)h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)W_fc2 = weight_variable([1024,rl])B_fc2 = bias_variable([rl])prediction = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+B_fc2)cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduction_indices=[1]))#1e-4=0.0001train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)sess = tf.Session()sess.run(tf.global_variables_initializer())for i in range(1000):    batch_xs, batch_ys = mnist.train.next_batch(100)    sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})    if i % 50 == 0:        print(compute_accuracy(            mnist.test.images[:1000], mnist.test.labels[:1000]))sess.close()

这次运行代码计算时间非常长,而且跑到后面,电脑开始明显的发热。排风扇也开始响了。

最后准确率到达了0.964

转载于:https://www.cnblogs.com/guolaomao/p/7995611.html

你可能感兴趣的文章
udisk2阻止自动Mount某些设备
查看>>
django初识
查看>>
IP共享重新验证
查看>>
MySQL优化
查看>>
CentOS系统安装配置mysql
查看>>
jQuery--加一行减一行
查看>>
BZOJ3573 HNOI2014米特运输
查看>>
Ubuntu16安装cx_Oracle
查看>>
java中hashcode()和equals()的详解[转]
查看>>
20155238 2016-2017-2 《JAVA程序设计》第九周学习总结
查看>>
使用 C++ 处理 JSON 数据交换格式
查看>>
使用Gradle自动创建Java项目结构
查看>>
MVC URL处理
查看>>
LeetCode 622. 设计循环队列 (C#实现)——数组,队列
查看>>
nmtui
查看>>
【计算机视觉】【视频处理】开源计算机视觉工具
查看>>
查找searching
查看>>
【DSP开发】CMD文件
查看>>
【算法集中营】CRC16 三种算法及c实现
查看>>
【并行计算-CUDA开发】CUDA并行存储模型
查看>>